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Abstract It is known that every causality-preserving transformation of Minkowski space-
time is a composition of Lorentz transformations, shifts, rotations, and dilations. In prin-
ciple, this result means that by only knowing the causality relation, we can determine the
coordinate and metric structure on the space-time. However, strictly speaking, the theo-
rem only says that this reconstruction is possible if we know the exact causality relation.
In practice, measurements are never 100% accurate. It is therefore desirable to prove that
if a transformation approximately preserves causality, then it is approximately equal to an
above-described composition.

Such a result was indeed proven, but only for a very particular case of approximate
preservation.

In this paper, we prove that simple compactness-related ideas can lead to a transformation
of the exact causality-preserving result into an approximately-preserving one.

Causality-Preserving Mappings: Formulation of the General Problem. One of the funda-
mental notions of physics is the notion of causality, the description of which events can
causally influence others. In particular, the Minkowski space-time of special relativity is an
(n + 1)-dimensional space-time E = Rn+1, in which the causality relation a ≤ b between
events a = (a0, a1, . . . , an) ∈ E and b = (b0, b1, . . . , bn) ∈ E is described by the formula

a ≤ b ↔ a = b ∨ (b0 ≥ a0 and (b − a)2 ≥ 0),

where a2 def= a2
0 − a2

1 − · · · − a2
n .

It is known that for every n ≥ 2, every bijection E → E which preserves the Minkowski
causality relation is linear (moreover, it is a composition of Lorentz transformations,
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shirts, rotations, and dilations). This theorem was first proven by A.D. Alexandrov [1, 5];
see also [2, 3, 7, 8, 16, 22, 23, 26, 27, 29–33, 35].

The original Alexandrov’s theorem requires that the causality is preserved for all pairs
of events a ≤ b. In practice, however, all our measurements are restricted only to a bounded
domain. For causality-preserving transformations on a bounded domain, a similar result
was only proven by A.D. Alexandrov; see, e.g., [4, 16]. For bounded domains, in addition
to linear transformations, we also have special nonlinear transformations–inversions:

Definition 1

• A Lorentz transformation is a mapping

(a0, �a) →
(

a0 − �v · �a
1 − �v · �v ,

�a − a0 · �v
1 − �v · �v

)
,

where �v · �a def= v1 · a1 + · · · + vn · an, and �v · �v ≤ 1.
• A rotation is a mapping (a0, �a) → (a0, T a), where T is a rotation in the n-dimensional

Euclidean space.
• A shift is a mapping a → a + b, for some b ∈ E.
• A dilation is a mapping a → λ · a, for some real number λ.
• An inversion is a mapping a → a−b

(a−b)2 + b, for some b ∈ E.
• A singular double inversion is a mapping

a → (a − b) + c · (a − b)2

1 + 2 · c(a − b)
+ b,

for some b ∈ E and c ∈ E for which c2 = 0.
• By a conformal mapping, we mean one of the above transformations or their composition.

Comment In the following text, we will use the fact that conformal mappings are described
by a finite number of parameters.

Definition 2

• By a bounded domain D, we mean a closure of a bounded open set.
• Let D be a bounded domain. We say that a bijection f : D → D preserves causality if it

has the following two properties:
– for every two events a, b ∈ D, a ≤ b implies f (a) ≤ f (b), and
– for every two events a, b ∈ D, a ≤ b implies f −1(a) ≤ f −1(b).

Theorem [4, 16] Let D be a bounded domain. Then, every bijection f : D → D which
preserves causality is a conformal mapping.

Discussion: It Is Desirable to Make This Result More Practical. In principle, this result
means by knowing only the causality relation, we can determine the detailed structure on
the space-time; see, e.g., [22, 23]. However, strictly speaking, the theorem only says that
this reconstruction is possible if we know the exact causality relation. In practice, measure-
ments are never absolutely exact. It is therefore desirable to prove that if a transformation
approximately preserves causality, then it is approximately conformal.
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Crudely speaking, we would like to show that if we want to reconstruct the structure
with accuracy ε > 0, then we can find such a measurement accuracy δ that if we can deter-
mine causality with accuracy δ, then based on this approximate causality, we will be able
to reconstruct the structure with the desired accuracy ε. (In the following text, we will give
precise definitions; right now, we just want to informally explain what we want.)

What Was Known. One approximate-preservation result was indeed obtained in [24], but
for a very particular case of approximate causality preservation. It is therefore desirable to
get a more general results.

Our Main Idea. The result from [24] required, in effect, a radically new proof of the
causality-preservation result, and the ideas from this proof are not easy to generalize fur-
ther; see, e.g., [20].

Instead of looking for drastically new proof ideas, we will apply a general approach
(see, e.g., [18, 19]), according to which we analyze the existing results (and sometimes the
existing proofs of these results) and use general techniques to extract stronger versions of
these results. In particular, in this paper, we use simple compactness-related techniques to
design the desired ε-δ-version of the Alexandrov’s theorem.

Physical Motivations for the Following Definitions. We want to reconstruct the events and
the causality relation with a certain accuracy.

Let us start with reconstructing events, i.e., points from the set E. For every real number
ε > 0, it is natural to say that the events a = (a0, a1, . . . , an) and b = (b0, b1, . . . , bn) are
ε-close if all their coordinates are ε-close, i.e., if |ai − bi | ≤ ε for all i. We will denote this
closeness by a ≈ε b. This condition is equivalent to maxi |ai −bi | ≤ ε. Thus, it is reasonable

to take ‖a − b‖ def= maxi |ai − bi | as the natural measure of distance between the two events.
Now, we can talk about approximate causality. It is reasonable to say that an event a

ε-approximately causally precedes b if there exists events a′ and b′ such that a′ is ε-close to
a, b′ is ε-close to b, and a′ causally precedes b′ (a′ ≤ b′). We will denote this approximate
causality by a ≤ε b.

Finally, let us make some comments about the mapping f . In physics, as we have men-
tioned, all measurements are approximate; thus, for any function f (x) with a physical mean-
ing to have practical sense, we must make sure that we can determine the value of this func-
tion based on the approximate value x ′ ≈ x of the input. To be more precise, for this function
to be practically useful, we must know, for every desired accuracy ε, with what accuracy δ

we must measure x to be able to determine f (x) with the desired accuracy. In other words,
we must know the dependence of δ on ε, i.e., the bound on the modulus of continuity of the
desired function.

Thus, we arrive at the following definitions.

Definition 3 For every point a = (a0, . . . , an) ∈ E, we define ‖a‖ = maxi |ai |.

Definition 4 Let δ > 0 be a real number.

• We say that the points a, a′ ∈ E are δ-close if ‖a − a′‖ ≤ δ. We will denote this relation
by a ≈δ a′.

• We say that an event a ∈ E δ-approximately precedes an event b ∈ E if there exist events
a′, b′ ∈ E such that a′ is δ-close to a, b′ is ε-close to b, and a′ ≤ b′. We will denote this
relation by a ≤δ b.
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Definition 5

• By a modulus of continuity, we mean a mapping m(ε) which maps positive real numbers
into positive real numbers.

• Let m be a given modulus of continuity. We say that a bijection f : D → D is m-
continuous if for every ε > 0 and for all a, a′ ∈ D, the following two properties hold:
– if ‖a − a′‖ ≤ m(ε), then ‖f (a) − f (a′)‖ ≤ ε; and
– if ‖a − a′‖ ≤ m(ε), then ‖f −1(a) − f −1(a′)‖ ≤ ε.

Definition 6 Let D be a bounded domain, and let δ > 0 be a real number. We say that a
bijection f : D → D δ-preserves causality if it has the following two properties:

• for every two events a, b ∈ D, a ≤ b implies f (a) ≤δ f (b), and
• for every two events a, b ∈ D, a ≤ b implies f −1(a) ≤δ f −1(b).

Definition 7 Let ε > 0 be a real number. We say that a function f : D → D is ε-conformal
if there exists a conformal mapping c : D → D such that for every a ∈ D, we have
f (a) ≈ε c(a).

Proposition 1 Let D be a bounded domain, and let m be a modulus of continuity. Then,
for every ε > 0, there exists a δ > 0 such that if an m-continuous bijection f : D → D

δ-preserves causality, then f is ε-conformal.

Proof 1◦. Let us start with some notations and observations. By definition, a mapping f

is ε-conformal if there exists a conformal mapping c for which ‖f (a) − c(a)‖ ≤ ε for all
events a ∈ D. This condition is equivalent to ‖f − c‖∞ ≤ ε, where for every function g(a),

we denote ‖g‖∞
def= maxa∈D g(a).

The condition that ‖f − c‖∞ ≤ ε for some conformal transformation c is, in its turn,

equivalent to d(f,C) ≤ ε, where d(f,C)
def= minc∈C‖f − c‖∞ is the distance from f to the

set C of all conformal mappings. Since the set C is finite-dimensional, this distance d(·,C)

is continuous in terms of the sup metric ‖ · ‖∞.
2◦. Let us now prove our result by reduction to a contradiction. Let us assume that for

some ε > 0, no such δ > 0 exists. This means that for every natural number k, for δ = 1/k,
there exists an m-continuous bijection fk : D → D which (1/k)-preserves causality but
which is not ε-conformal, i.e., d(fk,C) ≥ ε.

The set of all m-continuous functions f : D → D is uniformly continuous (by definition
of m-continuity) and equibounded (since f (a) ∈ D for all a, and D is a bounded domain).
Thus, in terms of the sup metric, it is a compact set. So, from the sequence fk , we can extract
a convergent subsequence.

Since the inverse mappings also belong to the same compact set, from this subsequence,
we can extract a sub-subsequence for which the inverse functions converge as well.

To simplify notations (and without losing generality), we can denote this convergent sub-
subsequence by the same notations fk . Then,

• fk → f for some function f ,
• f −1

k → f ′ for some function f ′,

• each mapping fk

1

k
-preserves causality, and

• each mapping fk is not ε-conformal, i.e., d(fk,C) ≥ ε.
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3◦. For every point a, we have f −1
k (fk(a)) = a. Thus, in the limit k → ∞, we get

f ′(f (a)) = a and similarly, f (f ′(a)) = a. So, f ′ is the inverse function to f : f ′ = f −1.
4◦. Since d(fk,C) ≥ ε and fk → f , in the limit, we get d(f,C) ≥ ε.
5◦. Let us show that the limit transformation f preserves causality, i.e., that for all a and

b for which a ≤ b, we have f (a) ≤ f (b) and f −1(a) ≤ f −1(b).
5.1◦. Let us first prove the first implication. Let us fix a and b for which a ≤ b.
Since the function fk

1
k
-preserves causality, for every a and b, we have fk(a) ≤1/k fk(b).

By definition of approximate causality, this means that there exist the events Ak ≤ Bk for
which ‖fk(a) − Ak‖ ≤ 1/k and ‖fk(b) − Bk‖ ≤ 1/k.

When k → ∞, then fk(a) → f (a); since ‖fk(a)−Ak‖ ≤ 1/k, we also have Ak → f (a).
Similarly, we have Bk → f (b). The Minkowski causality relation is closed, so Ak ≤ Bk

implies that limAk ≤ limBk , i.e., that f (a) ≤ f (b).
5.2◦. Similarly, we prove that a ≤ b implies f −1(a) ≤ f −1(b).
Thus, f preserves causality and hence, according to Alexandrov’s theorem, f is a con-

formal mapping, i.e., f ∈ C. This contradicts to our conclusion that d(f,C) ≥ ε > 0. The
proposition is proven. �

Comment It is worth mentioning that most applications described in [18, 19] use much more
sophisticated techniques than our simple proof. It is also worth mentioning that some more
sophisticated logical techniques have been used in geometry [25].

Applicability to Curved Space-Time Models. The Minkowski space-time of special rela-
tivity is a good approximation to the actual space-time. However, the actual space-time is
different from the Minkowski space-time: e.g., it is curved. A natural question is: can we
extend the above result to curves spaces?

Some results of this type are known; see, e.g., [11–16]; however, these results only handle
specific type of curved spaces, and besides—just like the original Alexandrov’s theorem—
they have only been proven for the case when the transformations exactly preserve causality.
We will show that is possible to extend our results for all space-time models which are
sufficiently close to the Minkowski space-time. Let us first extend the above definitions to a
general causality relation.

Definition 8 Let D be a bounded domain. By a causality relation, we mean an order �
on D.

Definition 9 Let D be a bounded domain, let δ > 0 be a real number, and let � be a causality
relation on D.

• We say that an event a ∈ E δ-approximately precedes an event b ∈ E if there exist events
a′, b′ ∈ E such that a′ is ε-close to a, b′ is ε-close to b, and a′ � b′. We will denote this
relation by a �δ b.

• We say that a bijection f : D → D δ-preserves causality � if it has the following two
properties:
– for every two events a, b ∈ D, a � b implies f (a) �δ f (b), and
– for every two events a, b ∈ D, a � b implies f −1(a) �δ f −1(b).

• We say that a causality relation � on a bounded domain D is δ-close to the Minkowski
order ≤ if for all a, b ∈ D, the following two properties hold:
– if a ≤ b, then a �δ b;
– if a � b, then a ≤δ b.
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Proposition 2 Let D be a bounded domain, and let m be a modulus of continuity. Then, for
every ε > 0, there exists a δ > 0 such that if a causality relation � is δ-close to the Minkowski
relation ≤, and an m-continuous bijection f : D → D δ-preserves the relation �,
then f is ε-conformal.

Proof 1◦. Let us prove our result by reduction to a contradiction. Let us assume that for
some ε > 0, no such δ > 0 exists. This means that for every natural number k, for δ = 1/k,
there exists an m-continuous bijection fk : D → D and a causality relation �k for which the
following properties hold:

• the causality relation �k is 1
k
-close to the Minkowski causality relation ≤;

• the bijection fk
1
k
-preserves the relation �k ; and

• the bijection fk is not ε-conformal, i.e., d(fk,C) ≥ ε.

2◦. Similarly to the proof of Proposition 1, from this sequence, we can extract a subse-
quence fk which converges to some m-continuous bijection f . We will denote this subse-
quence by the same notations fk . Then:

• fk → f ;
• f −1

k → f −1;
• each mapping fk

1
k
-preserves the causality relation �k ; and

• each mapping fk is not ε-conformal, i.e., d(fk,C) ≥ ε.

3◦. Let us show that the limit transformation f preserves the Minkowski causality rela-
tion ≤, i.e., that for all a and b for which a ≤ b, we have f (a) ≤ f (b) and f −1(a) ≤ f −1(b).

4◦. Let us first prove the first implication. Let us fix a and b for which a ≤ b.
4.1◦. Since the causality relation �k is 1

k
-close to the Minkowski relation, a ≤ b im-

plies that a 1
k
-approximately �k-precedes b, i.e., that there exist events ak and bk such that

‖a − ak‖ ≤ 1/k, ‖b − bk‖ ≤ 1/k, and a �k bk .
4.2◦. Due to the fact that fk

1
k
-preserves the causality relation �k , from ak �k bk , we

conclude that fk(ak)
1
k
-approximately �k-precedes fk(bk), i.e., that there exist events Ak

and Bk such that ‖Ak − fk(ak)‖ ≤ 1/k, ‖Bk − fk(bk)‖ ≤ 1/k, and Ak �k Bk .
4.3◦. Since the causality relation �k is 1

k
-close to the Minkowski relation, Ak �k Bk

implies that Ak
1
k
-approximately ≤-precedes b, i.e., that there exist events A′

k and B ′
k such

that ‖Ak − A′
k‖ ≤ 1/k, ‖Bk − B ′

k‖ ≤ 1/k, and A′
k �k B ′

k .
4.4◦. From ‖a − ak‖ ≤ 1/k and ‖b − bk‖ ≤ 1/k, we conclude that ak → a and bk → b.

Since the sequence fk → f is equicontinuous, we conclude that fk(ak) → f (a) and
fk(bk) → f (b).

4.5◦. Since ‖Ak − fk(ak)‖ ≤ 1/k and fk(ak) → f (a), we conclude that the sequence Ak

tends the same limit f (a). Since ‖Ak − A′
k‖ ≤ 1/k, the sequence A′

k tends to the same limit
as well: A′

k → f (a).
Similarly, we have B ′

k → f (b). Since A′
k ≤ B ′

k and the Minkowski causality relation is
closed, A′

k ≤ B ′
k implies that limA′

k ≤ limB ′
k , i.e., that f (a) ≤ f (b).

5◦. Similarly, we prove that a ≤ b implies f −1(a) ≤ f −1(b).
Thus, f preserves the Minkowski causality and hence, according to Alexandrov’s the-

orem, f is a conformal mapping, i.e., f ∈ C. This contradicts to our conclusion that
d(f,C) ≥ ε > 0. The proposition is proven. �

Similar Problem: Transformations Preserving a Fixed Distance. If instead of a space-
time, we only consider a proper space S, then a natural question is: How can we measure
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a distance d(a, b) between different points a and b in space—e.g., in the standard physical
space R3?

Ideally, we should have measuring instruments which can measure arbitrarily large and
arbitrarily small distances. However, in reality, the sizes of the rulers are limited both from
above (we cannot have too long rulers) and from below (we cannot have too short ones).
Thus, the distances which can be directly measured by real rulers are also bounded from
above and from below. A natural question is: if we only know such distances, can we
uniquely determine the remaining ones?

In precise terms, let us assume that we have two number d ≤ d and we have a bijection
mapping f : S → S for which, for all a, b ∈ S, if d ≤ d(a, b) ≤ d , then d(f (a), f (b)) =
d(a, b). Will it then follows that f is an isometry—and hence, for S = R3, that f is a linear
metric-preserving transformation?

This is indeed true even for the case when d = d ; see, e.g., [6, 9, 10, 17, 28, 34, 36]. For
this case, the theorem says that every transformation which preserves a fixed distance d is
an isometry.

Definition 10 We say that a bijection f : D → D preserves distance 1 if it has the following
two properties:

• for every two points a, b ∈ D, if d(a, b) = 1, then d(f (a), f (b)) = 1, and
• for every two points a, b ∈ D, if d(a, b) = 1, then d(f −1(a), f −1(b)) = 1.

Theorem [6] Every bijection f : R3 → R3 which preserves distance 1 is a linear transfor-
mation.

A localized version of this result has been, in effect, proven in [21]:

Definition 11 By Br
def= {x ∈ R3 : d(x,0) ≤ r}, we will denote a ball of radius r with a

center at 0.

Proposition 3 [21] There exists a constant C0 > 1 such that for every radius r , and for
R = C0 · (r + 1), every bijection f : BR → BR which preserves distance 1 is linear on Br .

In principle, this result means that by measuring only distances from a limited range,
we can uniquely reconstruct all the distances. However, from the practical viewpoint, this
is not completely true. As before, measurements are never 100% accurate, so we can only
get approximate values of the distance. So, the question is: if we want to know the distances
with a given accuracy ε > 0, is it possible to select a measurement accuracy δ > 0 in such
a way that measurements with accuracy δ would enable us to reconstruct all the distances
with the desired accuracy ε?

A construction similar to the one from causality preserving transformations shows that
the result is “yes”:

Definition 12 Let δ > 0. We say that a bijection f : D → D δ-preserves distance 1 if it has
the following two properties:

• for every two points a, b ∈ D, if d(a, b) = 1, then

1 − δ ≤ d(f (a), f (b)) ≤ 1 + δ,

and
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• for every two points a, b ∈ D, if d(a, b) = 1, then

1 − δ ≤ d(f −1(a), f −1(b)) ≤ 1 + δ.

Definition 13 Let ε > 0 be a real number. We say that a function f : D → D is
ε-linear if there exists a linear mapping c : D → D such that for every a ∈ D, we have
d(f (a), c(a)) ≤ ε.

Proposition 4 Let C0 > 1 be a constant from Proposition 3, let r > 0 be a given real number,
let R = C0 · (r + 1), and let m be a modulus of continuity. Then, for every ε > 0, there exists
a δ > 0 such that if an m-continuous bijection f : BR → BR δ-preserves distance 1, then f

is ε-linear on Br .

The proof of this result is similar to the proof of Proposition 1.

Comment This proposition answers the question of whether it is potentially possible to re-
construct large or small distances by measuring medium ones. The next natural question is:
How many direct measurements do we need for this reconstruction?

If we simply follow standard proofs from [6, 9, 10, 17, 28, 34, 36], we get an unrealistic
exponential number of measurements; a much faster (and thus realistic) measurement-and-
reconstruction procedure is described in [21].
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